The realization space is [1 1 0 -x1^2 - x1 + 1 0 1 1 0 -x1^2 - x1 + 1 1 x1 - 1] [0 1 1 -2*x1^2 + x1 0 0 1 x1 - 1 -2*x1^2 + x1 x1 x1^2 - x1] [0 0 0 0 1 1 1 -x1 x1^3 - 2*x1 + 1 -x1 + 1 -x1^2] in the multivariate polynomial ring in 1 variable over ZZ within the vanishing set of the ideal Ideal (4*x1^15 - 24*x1^14 + 37*x1^13 + 15*x1^12 - 100*x1^11 + 117*x1^10 - 65*x1^9 + 18*x1^8 - 2*x1^7) avoiding the zero loci of the polynomials RingElem[2*x1 - 1, x1, x1 - 1, x1^4 - 3*x1^3 - x1^2 + 3*x1 - 1, x1^3 - x1^2 - 2*x1 + 1, x1^2 - 3*x1 + 1, x1^2 + x1 - 1, x1 + 1, x1^3 - 2*x1^2 - x1 + 1, x1^3 + 2*x1^2 - 3*x1 + 1, x1^3 - x1^2 + 2*x1 - 1]